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I. Introduction

Coronary Health Disease (CHD) morbidity and mortality rates in the advanced
nations rose until 1970’s and have been declining since then. Between 1968 and
1982 there was approximately a 30% reduction in deaths from CHD in the U. S.
A", These trends may be associated with changes in eating and smoking habits over
these time periods. The changes in medical care which occurred during this period
of time also may have played a part in this reduction. Goldman and Cook? reviewed
the literature regarding the effect of various potential explanations for the reduction
in CHD mortality between 1968 and 1976. They estimated that changes in life style,
specifically the reduction in serum cholesterol levels and cigarette smoking, accounted
for more than half of the reduction in ischemic heart disease mortality. In comparison,
medical intervention, with coronary care units and the medical treatment of clinical

ischemic heart disease and hypertension, accounted for about 40% of the decline.

*Senior Researcher, Korea Institute for Population and Health.

1) U.S. Bureau of the Census, Statistical Abstract of the United States, 1986(106th Edition), Washing-
ton D.C, U.S. Bereau of the Census, 1985.

2) Goldman, L. and E. F. Cook, “The decline in ischemic heart disease mortality rates: An
analysis of the comparative effects of medical interventions and changes in lifestyle”, Annals
of Internal Medicine, Vol.101, 1984, pp.825~836.
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An alternative method to gain further insight into disease mechanism by describing
the évolut‘ion 6f disease procééses over a lengthy period of time and through various
disease stages is to construct a mathematical probabilisitic model. Sacks and Chiang”
proposed a stochastic model for the study of CHD to describe the transitions from
the healthy state and the state of having non-fatal CHD to death from CHD or
other causes. However, they assumed that the probabilities of changes in states were
independent of patient risk factors and also time-invarient. Several biostatistical techni-
gues are available to relate the outcome of a chronic disease to individual patient
characteristics. For example, in a stochastic compartment model, one (a) specifies
a set of discrete health states, (b) specifies functions to describe transitions between
those states, and (¢) fits functions to time-specific morbidity and mortality data. The
disease process of CHD is modeled as a stochastic compartment model (a) to study
the contribution of individual risk factors to the changes in CHD morbidity and morta-
lity rates and (b) to test the effectiveness and efficiency of different risk factor interven-
tion strategies.

The discrete-time stochastic model presented in this paper pays attention on the
association between physiological risk factors and CHD morbidity as well as mortality
trends. Transition probabilities are modeled as a polychotmous logistic function of
risk factors. A series of separate simple logistic regression analyses proposed by Begg
and Gray” are performed as a replacement for estimating polychotomous logistic regre-
ssion parameters. Data from the Finnish North Karelia Project” is used to test the
model.

The model’s goodness of fit is tested by comparing the number of events expected
in deciles of estimated 6-year risk with the number of cases observed for each of

the endpoints. Monte Carlo simulation, sequentially applying computer-generated ran-

3) Sacks, S. T.and C. L. Chiang, “A Transition-Probability Model for the Study of Chronic

Diseases’, Mathematical Biosciences, Vol.34, 1977, pp.325~346.
4) Begg, C. B. and R. Gray, “Calculation of Polychotomous Logistic Regression Parameters

Using Individualized Regressions”, Biometrika, Vol71, No.1, 1984, pp.11~18. .
5) Puska, P, J. Tuomilehto, J. Salonen and et al, The North Karelia Project. Evaluation of a

Comprehensive Community Programme for Control of Cardiovascular Diseases from 1972~1977 in
North Karelia, Finland, Copenhagen, World Health Organization, 1981.
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dom numbers to determine transitions, is used to study the projected effects of various

preventive intervention strategies, i. e., reducing the risk factor levels.

II. Model

The dynamics of CHD in a cohort population can be illustrated by a model as
shown in Fig. 1. where the transition probabilities [p(k)’s and q(k)’s] define the
proportion of the population making the transition from one state to another during
a specified period of time k. These probabilities depend on history of prior Ml and

risk factor levels.

Figure 1. A Model for Coronary Heart Disease

Time (k) Probability Time (k +1)

i— i
i :
I
No Change I—~-J
|
{ 1- ( 1(k) + z(k) L
! p p
| +p:(0))
: J N B Death from Other Causes(OC)
No Previous k
L Myocardial _— P
Infarction(MI) Death from Coronary:
p2(k) Heart Disease(CHD)
First Non—fatal MI - ——
0 e !
I
i
e - . e m e e m e, e e e — e ——— —|
I |
! t
! : [
: l No Change 1—-——’
\ I_qu(k) +qz(k)
' + 3]
q:
: 3 L Death from OC 1
!—-J Previous MI | q‘(k) i
: , Death from CHD 1
1 q:(k)
|
i
! ’ Recurrent Non —fatal MI -—
: qs(k) )
L

. m———— e e e o B i it S !

161



This model is designed to investigate CHD morbidity and mortality rates from CHD
as well as non-CHD causes. There are two initial states: free of Ml and already
affected with MI during the kth time interval Healthy men free of MI of the first
branch either stay healthy or proceed to one of three states: two death states and
one illness state. The death states include death from CHD and death from other
causes. The illness state is experiencing a non-fatal MI. The survivors of a first non-fatal
MI are moved to the ‘previous MI' pool and included in the group at risk when
the next time interval begins. The second branch starts with those who have a history
of Ml. These men may encounter the same possible events as the first branch, but
their transition probabilities are different. Survivors of recurrent non-fatal Ml reenter
the ‘previous MI’ pool when the next time interval starts.

Probabilities p:(k), p.(k) and p.(k) are defined as the likelihood that a healthy indivi-
dual will die from non-CHD causes, die from CHD, or suffer a non-fatal MI, respecti-
vely during the kth time interval. The probability of no change from healthy status,
say p.(k), is 1 minus the sum of the three probabilities of having any events. The
q probabilities are similarly defined except that they refer to individuals who have
a history of non-fatal MI prior to the kth time interval.

The risk of the selected endpoint (d=1,-3) for an individual i at the kth time

interval can be written as

_ 1
pa(k) = 1+exp {—f(B.K), xJ}

where f[[}d(k), JE.] = Bdl(k) 4 x,;+ de(k) *xp e+ de(k) * Xy,
[}a(k) =(Bulk),*,B4(K)) is a vector of unknow parameters,

and giz(xn,‘“,x,,,) are possible risk factors with x;, an indicator for the

constant term.

IlI. Methods

There are three distinct transition and a ‘no change endpoints for each of the

two branches of the model. When risk factors are incorporated into the model to

162



affect the transition probabilities to more than two endpoints from the intial state,
a polychotomous logistic regression analysis may be used. However, only a limited
number of software packages are available for the polychotomous logistic regression
analyses. It also presents some computational limitations, such as the inability to acco-
mmodate sparse data. For these reasons, the individualized logistic regression technique
proposed by Begg and Gray is utilized. In this technique, each endpoint is individually
compared with the ‘no change’ baseline state using simple dichotomous logistic regre-
ssion models. It has been shown that the maximum likelihood estimators (MLE) of
individualized regression coefficients are asymptotically unbiased estimators of polycho-
tomous logistic regression parameters. The relative efficiencies of MLE using the indivi-
dualized model as compared with the polychotomous model are observed to be gene-
rally high. Suppose we have p-1 covariates, x; (j=2,-p), with x, an indicator for
the - constant term, for n cases (i=1,-n). By suppressing the index for time unit,
let Bs= (Bs,**,B4) be the individual logistic regression parameter vector for the tranistion
probabilities from baseline category to the dth category. Here, denote ‘no change’
as the baseline category, death form non-CHD causes as the first category, CHD
death as the second category, and non-fatal MI as the third category. Let z.be an
indicator variable which takes the value 1 if the ith individual belongs to the dth

category and O otherwise.

Let ¢m:pr(2m:1/{i) (d:O,"',T),

where

O PES I
1+ exp( - gd’{i).

The polychotomous model is based on the assumption that

lOg((p.ﬁ/(Dni) = 9‘1' Xi (= 1,"',T) """"""" (1)
where QF(Bd;,'",Bd,) is a p—vector of unknown parameters. An individual
logistic regression comparing category d with the normal category, denoted category O,

would have a model of the form

: 109(9‘1,-/9“,-) = Id'-}:l' (d: 1, "',T] __________ (2)
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where 8.,=pr(z:=1./%,z.:+2,=1)
8.=pr(z.=1/%,2:F2s=1)
=1—0.,
and where r;is a p-vector of unknown parameters. It can be verified that the two
models are parametically equivalent, that is, p=§J(d=1,'",T).
Using Bayes' theorem,
0:= u” (Gut 0,

therefore,

G 0u=0s"(1-6,).

Consequently, if the individualized method is adopted and T separate logistic analy-
ses are performed using (2) for d=1,--*T, the resulting parameter estimates, denoted
‘by 7,,>*.tr may be substituted in (1) to obtain predicted probability estimates. Moreover,
if maximun likelihood estimation is employed, the estimates, 7: will be asymptotically
unbiased.

Since the sum of all possible transition probabilities must be equal to 1, normalization

is achieved as follows:
T

it i —

0, ;e 1

where 6,=0. xexp(r’ x) from (2) (@=1,-T).
Thus,
0.(1 +dZT:exp ([.9 x)=1
Therefore,l .
1
1+iexp(g’ x)

d=1

eoi =

04 is computed in turn by using 0.

0.,=0. * exp(z.,’ {.) (d:].,"',T).

The miximum likelihood estimator, denoted as Fa, and its individual variance may
be obtained from standard output form simple logistic regression packages. The transi-
tion probability of the selected endpoint (d=1,2,3) for an ith individual at the kth

time interval can be written as
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() =p.(k) * exp Gix) d=1,2,3 ——----- (3)

p(k) = - 1
1+ ;exp (7l x)

where 7« (k) =(74(k), (k) ) is a vector of unknown parameter, and Xi =(xu,**, x,) are
possible risk factors with x: an indicator for the constant term.

Each transition probability are not only a function of risk factors, but vary over
time period. To incorporate this time dependency into the model, year-specific crude
transition probabilities are examined first. The sample data are then aggregated for
each time period if the crude year-specific transition probabilities are shown to be
at the same level. For example, in the six-year follow-up study for the North Karelia

project, we found that the transition probabilities could be divided into three periods

of two years each, within which the probabilities are at about the same level.
These observations have led us to properly aggregated data for the construction of
likelihood functions. In practical applications, using yearly data for the estimation of
year-specific regression coefficients tends to provide less significant coefficients and
thus less conclusive inferences about the effects of covariates. This is due to the
fact that there are smaller number of events or occurrences than the aggregated data.
To check the validity of the model, the observed number of events were compared
with the expected number of events by deciles of estimated 6-year risk in each event
category separately.

Two strategies are employed using Monte Carlo simulations to study the potential
benefits of preventing MI incidence or CHD death by lowering serum cholesterol levels.
The first strategy concentrates on the high risk group, for example, reducing the choles-
terol level of people in the top decile of the cholesterol distribution to 180 mg/dl
The second strategy reduces the cholesterol level of the entire population by a certain
amount. The percent reduction in MI incidence, CHD mortality rates, or all cause
mortality rates for each stratgy are computed and compared.

This paper utilized simulation software tools from the Resource for Simulation of
Stochastic Micropopulation Models located at University of Minnesota and funded

by the NIH Biomedical Research Technology Program. The purpose of the Resource
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is to advance the use of Monte Carlo simulation of structured population for biomedical
research. The emphasis is on development of simulation and analysis methods and
software, with application to epidemiological research studies. Stochastic micropopula-
tion models allow a variety of hypotheses about spread and control of disease to
be tested, and provide information on the effects of population structure and random
variation. Core and collaborative researches, training and dissemination activities are

being occurred in the areas of chronic, genetic and infectious diseases.

IV. Results

The dataset used for this study consists of 3,022 healthy men, free of MI initially,
aged 40-59 in 1972. This cohort was defined as part of the baseline evaluation of
the North Karelia Project. It includes risk factors levels such as serum cholesterol
and diastolic blood pressure measured in 1972 and the dates and types of follow-up
events: Mls or death between 1972 and 1977.

Table 1 shows the summary of descriptive statistics of the risk factors. The yearly
morbidity rates as well as mortality rates for both CHD and other causes are presented .
in Table 2. Using Table 2, data for each two-year period were aggregated as described
in the previous section to estimate individualized logistic regression parameters. Norma-
lized regression coefficients and standard errors are presented in Table 3. Both risk
factors have significant effects on the incidence of MI and CHD death but not on
the death from other causes as expected. However, cholesterol clearly has a greater

effect than diastolic blood pressure. The transition probabilities to various states during

Table 1. Descriptive Statistics of Risk Factors in the North Karelia Dataset

Mean+s.d. v Range* 75 Percentile
Cholesterol 274+ 49 108,486 303
Diastolic BP 94+ 12 48,148 100

+ Range values are for the minimum and maximum values.
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Table 2. Numbers of Events Occurred Between 1972 and 1977

NO MI Previous MI

Year At Risk* New MI CHD Other At Non-fatafi CHD Other

Death Death Risk* MI Death Death
1972 3022 19C 6%)°  8(3%) 20( .7%) 0 0 0 0
1973 2975 27C 9%) 16(5%) 19( 6%) 19 1 2 0
1974 2913 3111%) 14(5%) 27( 9%) 44 5 3 1
1975 2841 26( 9%) 9(3%) 23( 8%) T 1 4 3
1976 2783 13( 5%) 16(5%) 20( .7%) 90 3 2 1
1977 2734 18C .7%)  12(4%) 33(12%) 100 1 0 3

* Number of people at risk at the beginning of the year

*+The percentage is obtained as the ratio of number of occurrences to the people at risk

Table 3. Normalized Logistic Regression Coefficients and Standard Errors

State Year Intercept Cholesterol Diastolic BP
New MI 72~173 —493 40(.1)* —.25(.15)
74~175 —4.66 35(.12)* —.04(13)

76~77 ~550 64(.15)* 40N

CHD Death 72~73 —5.81 36(.19)* 620171
74~75 —561 38(.19)* 21(.20)

76~77 —547 49017 34018)°

Other Death 72~73 —5.02 —-.01(.16) -.110.17)
74~175 —4.82 —-.17(.15) 42013)*
76—77 —4.64 03(.14) .15(.13)

« Significant at 0.05 level

+ Significant at .10 level
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each time period for each individual could be determined from equation (3) and
used to generate events in the Monte Carlo simulations.

Table 4 shows the comparisons between observed and expected number of events
by deciles of 6-year risk scores. Chi-squared statistics, as compared with the critical
value at a=005 and 7 degrees of freedom, i. e. 14.07, indicate that the proposed
model fits the observed data significantly.

Figure 2 shows the simulated percent reduction of CHD mortality in a six-year
period with various strategies using the North Karelia dataset. The solid line depicts
the simulated outcome when the cholesterol levels of various proportions of high
risk people are reduced to 180mgdl. For example, if the quartile at greatest risk

reduce their cholesterol level to 180mg/dl using drugs, over six-year period there

Table 4. Observed (o) Number of Events and Expected (¢) Number of Events by Decile
of Estimated 6 Year Risk (3022 North Karelia Men Aged 40~59)

Non-Fatal CHD Other Causes
Decile MI Death of Death
e 0 e o e 0
1 6.4 10 25 1 11.0 12
2 8.0 9 35 6 11.8 10
3 9.1 5 4.2 4 124 13
4 10.2 9 49 5 129 12
5 112 9 5.7 7 134 12
6 125 10 6.5 6 139 10
7 139 14 76 9 145 13
8 15.7 12 9.0 6 152 21
9 188 24 115 7 16.5 21
10 29.0 32 20.0 24 204 18
Total 134.8 134 75.4 75 142.0 142
Chi-square 7.70 6.93 5.59
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would be a 34% reduction in CHD deaths. The dotted line shows the outcome for
population intervention. For instance, if every individual reduces their cholesterol level

by 30mgdl, there will be a 24% reduction in CHD death. These finding are consistent

Figure 2.Projected Changes in CHD Deaths with Cholesterol Intervention in North Karelia
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Figure 3. Projected Changes in New MI with Cholesterol Intervention in North Karelia
Men Aged 40—59

Percent of Population at Highest Risk (HR) Reduced to 180mg.”/d!

0 10 20 30 40 50
60 T T T T T T T T T .
_’_./2
Z —
3 HR
Z
= 40 _.--"P
;; - i -
= T
z L e
’?J ,—"‘
Tl : ! ! ! J
0 10 20 30 40 50 60

Unit (mg/d) of Cholesterol Reduction in the Population(P)

169



Figure 4. Projected Changes in All Deaths with Cholesterol Intervention in North Karelia
Men Aged 40~59
Percent of Population at Highest Risk (HR) Reduced to 180mgdl
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with the findings of Kottke et al.’s study®. Figures 3 and 4 show the predicted percent
reduction of MI incidence rates and all-cause mortality rates for various intervention
strategies. A more detailed description of the relative effectiveness of high-risk versus

population-based intervention is discussed in Park’s work”.

V. Conclusion

The advantages of the modeling system developed in this study are as follows:
This modeling system is a multi-state and discrete-time one. Thus, it provides the

opportunity to study the dynamic aspects of the disease progress over a period of

6) Kottke, T. E., P. Puska, J. T. Salonen, J. Tuomilehto and A. Nissinen, “Projected Effects
of High-risk Versus Population-based Prevention Strategies in Coronary Heart Disease”, Ame-
rican Journal of epidemiology, Vol121, No.5, 1985, pp.679~703.

7) Park, H., Simulation of a Population=based Model of Coronary Heart Disease Morbidity and Mortality.
Ph. D. Thesis in Biometry and Health Information Systems, University of Minnesota, Minnea-
polis, MN,, U.S., Sep. 1989.

170



time. Also the changes of event rates for each time interval can be reflected to predict
the event rates for each time interval as well as the entire study period.

The transition probabilites among states are dependent upon individual characteris-
tics. Thus, it allows one to study the effect of risk factors on the trends of CHD
incidence and prevalence as well as mortality rates, and the influence of a risk factor
reduction of CHD morbidity and mortality. This model also may help policy makers
understand the potential population impact and benefits of public health strategies
which affect the probability of disease or death by changing the life style of the
high risk group of the entire population.

Competing risks are incorporated in the model. Thus, mortality and morbidity of
CHD as well as mortality from other causes can be studied at the same time. This
allows the investigator to look at what happens to the mortality from other causes
or total mortality rates when studying the effect of the intervention strategies on CHD
mortality and morbidity rates. In order to simulate the probabilistic elements of CHD,
this modeling system utilizes a Monte Carlo method to generate the events. In the
Monte Carlo technique, the events are generated by the use of a random number
generator and the opportunity to study the variability of the simulated event rates
for each set of replications.

However, many tasks remain to be accomplished to expand and improve on the current
modeling system, for example, it is necessary to develop more states in the evolution
of MI such as emergency medical services, various levels of hospitalization and other CHD
symptoms to Simulate and examine health service utilization and outcomes. It is possible
to investigate some alternative functions for generating transition probabilities such as
proportional hazards function, accelerated failure model, or power transformation to disc-

riminate additive and multiplicative nature of risk factors.
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