우리나라 死亡率과
一部 保健醫療資源現況 및
그 相關性 研究

I. 序論

保健醫療資源의 불균형 및 分布의 不均衡 및 資源活用의 非效率性 등은 我們國家
保健醫療部門의 主要 問題中일 것이다。

國民의 健康水準을 向上시키기 위해서는 適切한 量의 保健醫療 資源을 投入하되 이들 곤
고를 配分하여 高效利用 할 수 있도록 하여야 하겠다. 保健醫療部門에서의 均衡
적인 目標는 國民健康水準을 向上시키는데 두고 있으므로 限定된 保健醫療資源의 效率의
活用 문민 아니라 國民保健에 영향을 미치는 國民社會經濟의 環境的 또는 人口學的 変動
에 따라서 對策이 고려되어야 할 것이다. 這樣으로 오토로 社會에 일어는 適
正水準의 資源을 合理의으로 配分하여야 하며 보건의료체계의 구조적인 개발 및 내지 조화
를 가져오도록 努力해야 할 것이다.6

資源과 健康水準에 관해서 R. D. Fraser에 의해서 18個 先進諸国를 對象으로 保健醫療
資源을 獨立計數로 人口 10,000名당 醫師數와 病床數, 그리고 國民 一人當 總生產量(Gros-
ss Domestic Products) 등을 利用하였고 健康指標로서는 嬰兒死亡率 등 傳統計數로 하여
그 相關係에 관한 研究에서 두 難數間에 密接한 關係가 있음을 顯明한바 있다. 또 Pertti

*韓國人口保健研究院 研究員。

1) 社會經濟的 環境가 健康狀態에 致及한 影響을 주로 健康에 관한 問題는 獨立적으로 增長할
수 없다고 하였음。

2) World Health Organization, Interrelationships Between Health Programs and Socio-

3) R. D. Fraser, “Health and General Systems of Financing Health Care”, Medical Care,
kekki*는 「피란드」에서 保健醫療資源分布과 保健醫療 資源의 利用性 과의 關係를 調查研究한 結果에서 保健所 醫師, 病院 醫師, 保健所 病床, 一般病院病床, 保健看護員 및 老人病院病床數 등의 資源變數가 資源分布 과 有意한 關係가 있는 것으로 報告하였다. 4 한편 「파키스탄」에서는 醫師의 不足과 이등 醫師의 不均衡 分布, 資源分布과 산 密集의 어려움 등이나 一部 住民의 保健醫療資源分布 不可能 등의 問題을 護理하기 위해서는 우선적으로 可用資源 즉 醫師, 看護員, 病院, 薬局, 保健所와 病床數 等의 分布 를 파악하여 國民 醫療要求에 부합될 수 있도록 政策的으로 資源配分計画이 이루어져야 함 을 제의하였다.

우리나라에서도 延*이 韓國의 醫療費支出 樣相의 比較分析에서 19개 先・後進國의 國民 1人당 醫療費支出과 民間 및 政府醫療費支出을 檢討하였고 5 6 醫療費支出, 즉 個人 및 國家 의 醫療財政이 所得水準과 密接한 管係가 있으며 亦 關係人口變數(總人口對比 15세이하 年齢 層의 人口比率, 總人口對比 60세이상 年齢,粗出生率, 期待餘命率)도 醫療費支出과 높은 相關 關係을 보여주고 있다. 7 이러한 점은 韓國의 現實이 그간의 극속한 經濟發展에도 불구하고 民間醫療費支出 對比 政府醫療費支出 負擔率이 극히 미약하므로 中進所得國으로서의 國民 福祉 増進을 위한 公共醫療投資 增大가 要求됨을 드러내 公共・民間醫療機構은 構造의으로나 機能의으로 相互補完의이어야 한다고 강조하고 있다. 따라서 本 稿에서는 最近 우리나라 死亡率의 변동과 관련하여 健康指標的 改善 그리고 醫療施設, 人力, 財政 등의 規模 및 分布 등을 파악하여 또는 한편, 아울러 이러한 변수가 死亡率의 變動에 일마큼 영향을 끼치고 있는가도 아울러 検討하는데 기초를 두었다.

目的

本 研究에서는 首先, 우리나라의 死亡率 變動 추이와 아울러 一部 保健醫療資源狀態의 變化를 考察하며,

同様으로, 保健醫療資源의 投入量과 死亡率 (Crude Death Rate: CDR) 및 比例死亡指數 (Proportional Mortality Indicator: PMI)와의 相互関聯性을 分析하고자

5) 保健醫療 資源利用에 있어 保健所에서 一次診療을 담당하는 醫師 및 混合併設 의치院설에 서 일하는 醫師가 증가되면서 個人院を 방문하는 환자수 및 입원을 필요로하는 환자수의 지하 와 함께 보건소 및 混合併設 의치院자는 증가한다고 하면서 그 율의성을 제시하였다.
7) 延河水, 金學洙, 保健醫療 資源과 診療生活圈, 韓國開發研究院, 1980.
셋째로, 健康水準을 向上시키는데 있어서 어떠한 保健醫療資源이 有意한가를 檢討하고자 하는 健康水準으로 的 目的을 두었다.

이상과 같은 分析目的을 달성함에 있어서 전체되어야 할 점은 어느 한 地域의 健康水準이 要素에 의해서만 결정되는 것이 아니고 그 地域의 社會經濟 및 人口学的 要因들과 복합 적인 관계를 갖고 있으며 또 資源量이 같다 하더라도 資源의 質이나 配分 루프에 따라 健康水準도 달라질 것이라는 假定을 統制하지 못한 점이다.

II. 資料 및 分析方法

資料 選定

世界保健機構 (WHO)에서 定한 健康的 定義에 의하면 「健康이란 단지 질병과 身體의 異常이 없는 狀態 뿐만 아니라 肉體의 紡織、精神의 紡織、而 나아가 社會의 紡織 완全히 안정된 狀態」라고 복합계 定義하고는 있지만 각 地域社會 住民이 얼마나를 健康한가를 測定한다는 事實은 매우 어려운 일이다。그러므로 一般的으로 健康水準을 파악하고자 할 때에는 종합 非健康狀態를 파악하는 既定의 方法을 使用하는 경향이 있다。 대부분 negative health index로서는 주로 死亡率, 病死率, 不具障礙率등이 利用되고 있으나 世界保健機構에서는 綜合的인 健康水準을 測定하는 指標로서 比例死亡率 (Proportional Mortality Indicator)이나 平均餘命 (Life Expectancy), 또는 粗死亡率 (Crude Death Rate)을 들고 있다。또한 과거에는 個人을 中心으로 健康狀態을 評価하던 것이 점차 社會가 發展되고 복잡하게 변천됨에 따라 地域社會住民 全體健康을 重要視하는 경향으로 움직이고 있다。

이러한 現實에서 本 研究에서는 健康水準을 파악하는 既定의 方法中 死亡率을 中心으
로 하여, 従屬變數로는 健康指標인 粗死亡率과 比例死亡率 (PMI)을 選定하였고 獨立變
數로는 社會經濟的인 變數, 人口變數 및 기타 環境적인 既定의 변數들이 모두 고려되어져야하
나 資料 集合의 제한 등으로 인하여 一部 保健醫療資源인 다음의 7個 變數만 使用하였다.

9) 洪在維, “國民健康水準 및 의료비용도” 韓国를 보는 문제의 描写와 解決, 서울대 始末, 非報의學校敎, 住民은 既定의 方法으로 平均餘命, 死亡率, 有病狀態, 醫療要求度, 保健醫療利用 度을 考慮하고 있다。
従属変数
1) 粗死亡率 (CDR)：粗死亡率은 한 지역 사회의 死亡率를 代表할 수 있으나, 死亡의 構造의 인内容까지는 表示해 주지 못한다.

2) 比例死亡指数 (PMI)：健康水準을 나타내는 한 指標로서 年間 全體死亡에 대한 50세 이상의 死亡構成比率를 말한다. 따라서 粗死亡率의 斷片의 인意味를 補完하는 뜻에서 比例死亡指数를 拡한 것이다.

獨立変数：一部 保健醫療資源
1) 人力11)
① 醫師：醫師 1人當 人口比
② 齒科醫師：醫科醫師 1人當 人口比
③ 看護員：看護員 1人當 人口比
2) 施設
① 病床數：人口 10,000名當 病床數
② 保健所數：行政地域別 保健所數
3) 財政
① 國民 1人當 年間公共保健醫療費
② 地方自治團體의 總裁出規模에 대한 保健醫療費 支出比率

우리나라의 保健指標에 대한 統計資料는 아직도 申告 및 記載의 規則로 인하여 信頼性 및 妥當性의 경이등 많은 問題點을 안고 있다. 특히 地域別 資料는 극히 최소하여 및 및 地域의 標本調查資料를 제외하고는 나타내어 있어서도 地域間의 比較는 매우 어려운 實際에 놓여있다.

11) 免許發給者를 기준으로 한 数値이며 漢方醫療人力은 제외되었음.
분석 방법

전술한 바와 같이 본 연구에서는 건강지표로서 자후과 보건의료자원 사이의 상호관련성을 파악하기 위하여 평균지역 및 연도별 현황을 고찰하고 이들 건강지표(자후)에 대하여 보건의료자원 등장과 적절한 영향을 미치고 있는가를 분석하였다.

분석 방법은 설정한 수면의 변화를 설명할 수 있는 7개 개체의 독립변수들의 자료를 SPSS를 이용하여 단계의 다변량 회귀분석하여 각 설명변수의 유의성을 파악하고 이들 변수 사이의 관계가 있는가 유의한 의미가 있는지를 검증하였다.

III. 结 果

死亡水準의 變化

유엔人口統計에 나타난 世界 및 個國家의 祖死亡率을 比較하면 1975年 韓國이 人口 1,000名當 7.0인데 比해서 美國은 8.9, 「프랑스」10.6, 西聞은 12.1로서 우리나라의 祖死亡率이 先進國의 경우보다 오히려 약간 낮은 水準에 머물고 있어 그간의 保健醫療서비스의 확대

Table 1. Mortality Trend in Korea

<table>
<thead>
<tr>
<th>Year</th>
<th>Infant Mortality Rate (per 1,000 births)</th>
<th>Crude Death Rate (per 1,000)</th>
<th>Proportional Mortality Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1955</td>
<td>134.0</td>
<td>14.3</td>
<td>-</td>
</tr>
<tr>
<td>1960</td>
<td>107.9</td>
<td>12.8</td>
<td>37.6</td>
</tr>
<tr>
<td>1965</td>
<td>58.2</td>
<td>9.0 ～ 11.9</td>
<td>41.5</td>
</tr>
<tr>
<td>1970</td>
<td>53.0</td>
<td>8.5 ～ 9.0</td>
<td>51.2</td>
</tr>
<tr>
<td>1975</td>
<td>38.0</td>
<td>7.0</td>
<td>64.3</td>
</tr>
<tr>
<td>1980</td>
<td>32.0</td>
<td>6.7</td>
<td>-</td>
</tr>
</tbody>
</table>

모길과 한 인간의 연령구조와의 차이에서 나타나는 결과임을 알 수 있다(표 3 참조). 한편, 경제 사회적 구조가 사업과 관련된 영구가 있는 1965년의 1,000명당 50인이 1980년에는 32로 파저에 피해 현저한 65세를 보여주고 있으나, 미주, 로비 및 비유 75세의 저층은 1960년의 60~70세의 연령층의 점점 떨어지는 결과를 갖는다. 따라서 최근 두각을 보이는 현재의 30~40세의 연령층의 저층은 1960년의 60~70세의 연령층의 저층에 비해 떨어지는 결과를 갖는다.

다는 반가하게도 1960년 60~70세의 저층은 1960년 60~70세의 저층으로만 해석할 수도 없다. 이는 맞보기의 경우 법궁가적인 사회 보험제도와 발달된 의료서비스가 공여되고 있음에도 높은 저층의 저층은 1960년 60~70세의 저층과 비해 떨어지는 결과를 갖는다.

따라서 1960년 60~70세의 저층을 결정하는데 매우 중요한 움직임을 갖는다. 이러한 점에서 비례 1960년 60~70세의 저층은 1960년 60~70세의 저층으로만 해석할 수도 없는 요인이 개별적인 영향을 미친 것이다.

따라서 저층은 1960년 60~70세의 저층을 결정하는데 매우 중요한 요인을 갖는다. 이러한 점에서 비례 저층의 저층은 1960년 60~70세의 저층을 나타내고 있음은 임상적인 영향을 미친 것이다.

따라서 1960년 60~70세의 저층은 1960년 60~70세의 저층으로만 해석할 수도 없는 요인이 개별적인 영향을 미친 것이다.

따라서 1960년 60~70세의 저층은 1960년 60~70세의 저층으로만 해석할 수도 없는 요인이 개별적인 영향을 미친 것이다.

따라서 1960년 60~70세의 저층은 1960년 60~70세의 저층으로만 해석할 수도 없는 요인이 개별적인 영향을 미친 것이다.

따라서 1960년 60~70세의 저층은 1960년 60~70세의 저층으로만 해석할 수도 없는 요인이 개별적인 영향을 미친 것이다.

따라서 1960년 60~70세의 저층은 1960년 60~70세의 저층으로만 해석할 수도 없는 요인이 개별적인 영향을 미친 것이다.

따라서 1960년 60~70세의 저층은 1960년 60~70세의 저층으로만 해석할 수도 없는 요인이 개별적인 영향을 미친 것이다.

따라서 1960년 60~70세의 저층은 1960년 60~70세의 저층으로만 해석할 수도 없는 요인이 개별적인 영향을 미친 것이다.

따라서 1960년 60~70세의 저층은 1960년 60~70세의 저층으로만 해석할 수도 없는 요인이 개별적인 영향을 미친 것이다.

따라서 1960년 60~70세의 저층은 1960년 60~70세의 저층으로만 해석할 수도 없는 요인이 개별적인 영향을 미친 것이다.

따라서 1960년 60~70세의 저층은 1960년 60~70세의 저층으로만 해석할 수도 없는 요인이 개별적인 영향을 미친 것이다.

따라서 1960년 60~70세의 저층은 1960년 60~70세의 저층으로만 해석할 수도 없는 요인이 개별적인 영향을 미친 것이다.

따라서 1960년 60~70세의 저층은 1960년 60~70세의 저층으로만 해석할 수도 없는 요인이 개별적인 영향을 미친 것이다.

따라서 1960년 60~70세의 저층은 1960년 60~70세의 저층으로만 해석할 수도 없는 요인이 개별적인 영향을 미친 것이다.

따라서 1960년 60~70세의 저층은 1960년 60~70세의 저층으로만 해석할 수도 없는 요인이 개별적인 영향을 미친 것이다.

따라서 1960년 60~70세의 저층은 1960년 60~70세의 저층으로만 해석할 수도 없는 요인이 개별적인 영향을 미친 것이다.

따라서 1960년 60~70세의 저층은 1960년 60~70세의 저층으로만 해석할 수도 없는 요인이 개별적인 영향을 미친 것이다.

따라서 1960년 60~70세의 저층은 1960년 60~70세의 저층으로만 해석할 수도 없는 요인이 개별적인 영향을 미친 것이다.

따라서 1960년 60~70세의 저층은 1960년 60~70세의 저층으로만 해석할 수도 없는 요인이 개별적인 영향을 미친 것이다.

따라서 1960년 60~70세의 저층은 1960년 60~70세의 저층으로만 해석할 수도 없는 요인이 개별적인 영향을 미친 것이다.

따라서 1960년 60~70세의 저층은 1960년 60~70세의 저층으로만 해석할 수도 없는 요인이 개별적인 영향을 미친 것이다.

따라서 1960년 60~70세의 저층은 1960년 60~70세의 저층으로만 해석할 수도 없는 요인이 개별적인 영향을 미친 것이다.
Table 3. Health Index by Country

<table>
<thead>
<tr>
<th>Country</th>
<th>Infant Mortality Rate (per 1,000 birth)</th>
<th>Proportional Mortality Indicator</th>
<th>Physician (person/served by each nurse)</th>
<th>Nurse (person/served by each nurse)</th>
<th>Population Bed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>13.2</td>
<td>10.1</td>
<td>6.9</td>
<td>6.4</td>
<td>79.9</td>
</tr>
<tr>
<td>America</td>
<td>20.0</td>
<td>16.1</td>
<td>9.4</td>
<td>8.9</td>
<td>82.8</td>
</tr>
<tr>
<td>France</td>
<td>18.2</td>
<td>11.3</td>
<td>10.7</td>
<td>10.6</td>
<td>-</td>
</tr>
<tr>
<td>West Germany</td>
<td>23.6</td>
<td>19.8</td>
<td>12.1</td>
<td>12.1</td>
<td>88.6</td>
</tr>
<tr>
<td>Italy</td>
<td>29.5</td>
<td>20.7</td>
<td>9.7</td>
<td>9.9</td>
<td>-</td>
</tr>
<tr>
<td>Korea</td>
<td>58.0</td>
<td>38.0</td>
<td>9.0</td>
<td>7.0</td>
<td>51.2</td>
</tr>
<tr>
<td>Malaysia</td>
<td>40.8</td>
<td>33.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mexico</td>
<td>68.5</td>
<td>49.7</td>
<td>9.6</td>
<td>6.7</td>
<td>-</td>
</tr>
<tr>
<td>Portugal</td>
<td>58.0</td>
<td>37.9</td>
<td>10.8</td>
<td>10.4</td>
<td>-</td>
</tr>
<tr>
<td>Yugoslavia</td>
<td>55.5</td>
<td>39.9</td>
<td>8.9</td>
<td>8.7</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: * 1975
** 1974
국가간에 현저한 차이를 볼 수 있는 점은 그망률이 일반의 건강상태에 영향을 주는 동시에 지역 특유의 인구구조에 따라서 달라지기 때문이라고 본다.

이상과 같이 자료는 단지 한 나라의 전반을 나타내는 전반의 적정에 거나지 않으며, 지역별 또는 인구의 계층별 건강자료를 분석하는 건강자료의 적정의 수준과 이용가능한 서비스의 수준에 따라서는 아무런 제한을 두지 못하고 본다. 오늘날 건강자료의 수준이 높아지면서, 건강서비스의 공급이 항상 동일하게 이루어지는 것이 아니므로, 전국의 인구의 계층별 건강자료를 함께 보면 전체건강자료가 대체로 것들이 지역별 인구의 계층별 건강자료를 통한 건강자료를 검토하는 것이 필요하다고 본다.

우리나라의 인구 산성에 따라 인구 분산도 나누어 표 5에서 살펴보면 1970년의 인구 0

성년 성별 산성은 1,000명당 47.89로써, 성별 치수는 매우 크다. 서울이 가장 낮아 40.37인데 비해 가장 높은 수은 68.83으로서 서울의 1.5배 이상으로, 15과 같은 성별 인구, 지역의 공급 서비스의 수준 및 건강자료의 적정의 수준과 이용가능한 서비스의 수준을 자료로 대조하여 볼 수 있는 것이 필요하다고 본다.

1 4 성별 성별가 가장 높은 성별은 충청북도의 24.62이며, 가장 높은 성별은 서울의 11.21.

그 다음이 산성의 12.23, 충남의 12.28이고, 그 다음의 인구가 적정의 수준이다.

1 4 성별 성별가는 원인의 유아의 건강을 양육하는데 좋은 환경이나 어린을 제6하는 것

으로서, 전 사회의 생활 상정 혹은 수준을 나누는 전반의 적정과 건강수준에 따라서는 필요하다고 본다. 그 수준의 높음수록 건강수준이 높다고 판단되는 건강수준의 적정은 중간의 58.48

이며, 가장 낮은 성별은 충남, 충남으로 각각 39.19, 39.39로 나타나고 있다.

성별 성별은 일반의 건강상태에 인구의 계층별의 요인에 의해서 결정된다고 본는데, 대로 서울, 산성, 충남 등과 같은 도시의 인구에 있어서는 같은 건강수준이 보다 낮은 현상은 보여주고 있다.

이상과 같은 결과를 검토한 결과, 서울, 산성의 도시의 건강수준에 비해, 전체적으로 양호한 제도였으나 서울, 산성의 도시의 건강수준에 포함된 도시에 비해,

성별 성별의 모형내 높음수록, 인구의 계층별 건강수준을 보유하고 있는 현상인라,

재료를 통해, 산성의 인구의 계층별 건강수준이 높게 나타났으며, 높은 성별도 낮게 나타내고 있어,

성별로 본 건강수준과 건강상태의 적정은,

보고서의 관계가 있음을 증명하고 있다.

한편, 보건의료자료의 수능계 분포를 표 4에서 보면, 역시 성별 수준이 낮은 산성의 인

수로, 산성의 인구의 우위인 계층, 산성의 인구의 우위인 계층이나 산성의 인구의 우위인 계층이 나타난 것으로 보아, 성별의 수준이 높게 나타났으며, 높은 성별로 낮게 나타내고 있어, 성별로 본 건강수준과 건강상태의 적정은,

보고서의 관계가 있음을 증명하고 있다.

Table 4. Distribution of Health Care Resources by Province

<table>
<thead>
<tr>
<th>Province</th>
<th>Physician (pers./physician)</th>
<th>Dentist (pers./dentist)</th>
<th>Nurse (pers./nurs)</th>
<th>Hospital (Number)</th>
<th>Health Center</th>
<th>Per Capita Health Expenditure (Won)</th>
<th>Percentage of Total Health Expenditure Over Total Budget on General Accounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seoul</td>
<td>5,275 (1,049)</td>
<td>936 (5,915)</td>
<td>3,192 (1,734)</td>
<td>7,321</td>
<td>9</td>
<td>272</td>
<td>2.5</td>
</tr>
<tr>
<td>Busan</td>
<td>727 (2,586)</td>
<td>70 (26,867)</td>
<td>350 (5,373)</td>
<td>1,553</td>
<td>6</td>
<td>215</td>
<td>1.9</td>
</tr>
<tr>
<td>Geonggi</td>
<td>1,117 (3,006)</td>
<td>249 (13,486)</td>
<td>1,303 (2,577)</td>
<td>1,443</td>
<td>25</td>
<td>216</td>
<td>2.0</td>
</tr>
<tr>
<td>Gangwon</td>
<td>380 (4,912)</td>
<td>56 (33,338)</td>
<td>833 (2,241)</td>
<td>725</td>
<td>19</td>
<td>272</td>
<td>2.0</td>
</tr>
<tr>
<td>Chungbuk</td>
<td>434 (3,413)</td>
<td>87 (18,291)</td>
<td>877 (1,699)</td>
<td>203</td>
<td>12</td>
<td>281</td>
<td>2.8</td>
</tr>
<tr>
<td>Chungnam</td>
<td>844 (3,389)</td>
<td>212 (13,493)</td>
<td>1,300 (2,200)</td>
<td>577</td>
<td>17</td>
<td>245</td>
<td>2.0</td>
</tr>
<tr>
<td>Jeonbuk</td>
<td>734 (3,316)</td>
<td>69 (35,283)</td>
<td>1,471 (1,655)</td>
<td>491</td>
<td>16</td>
<td>228</td>
<td>2.2</td>
</tr>
<tr>
<td>Jeonnam</td>
<td>1,597 (2,508)</td>
<td>101 (39,670)</td>
<td>1,515 (2,644)</td>
<td>1,131</td>
<td>26</td>
<td>158</td>
<td>1.3</td>
</tr>
<tr>
<td>Geongbuk</td>
<td>2,068 (2,205)</td>
<td>95 (47,995)</td>
<td>1,980 (2,303)</td>
<td>1,829</td>
<td>33</td>
<td>217</td>
<td>2.4</td>
</tr>
<tr>
<td>Geongnam</td>
<td>1,583 (1,971)</td>
<td>239 (13,052)</td>
<td>1,507 (2,069)</td>
<td>1,199</td>
<td>26</td>
<td>221</td>
<td>2.0</td>
</tr>
<tr>
<td>Jeju</td>
<td>134 (2,728)</td>
<td>12 (30,460)</td>
<td>104 (3,514)</td>
<td>66</td>
<td>3</td>
<td>249</td>
<td>3.6</td>
</tr>
</tbody>
</table>
Table 5. Mortality Situation in 1970 by Province

<table>
<thead>
<tr>
<th>Province</th>
<th>Mortality Rate at Birth (per 1,000)</th>
<th>Mortality Rate in 1-4 yrs. Old (per 1,000)</th>
<th>Proportional Mortality Indicator</th>
<th>Crude Death Rate (per 1,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole Country</td>
<td>47.89</td>
<td>15.47</td>
<td>48.62</td>
<td>6.71</td>
</tr>
<tr>
<td>Seoul</td>
<td>40.37</td>
<td>11.21</td>
<td>40.23</td>
<td>4.68</td>
</tr>
<tr>
<td>Busan</td>
<td>42.18</td>
<td>12.23</td>
<td>39.19</td>
<td>4.91</td>
</tr>
<tr>
<td>Geonggi</td>
<td>47.12</td>
<td>15.02</td>
<td>48.13</td>
<td>6.42</td>
</tr>
<tr>
<td>Gangwon</td>
<td>68.83</td>
<td>24.62</td>
<td>39.39</td>
<td>8.12</td>
</tr>
<tr>
<td>Chungbuk</td>
<td>55.24</td>
<td>19.74</td>
<td>49.00</td>
<td>7.92</td>
</tr>
<tr>
<td>Chungnam</td>
<td>42.28</td>
<td>12.28</td>
<td>53.78</td>
<td>6.38</td>
</tr>
<tr>
<td>Jeonbuk</td>
<td>48.40</td>
<td>15.76</td>
<td>50.19</td>
<td>7.23</td>
</tr>
<tr>
<td>Jeonnam</td>
<td>49.61</td>
<td>16.46</td>
<td>51.73</td>
<td>7.65</td>
</tr>
<tr>
<td>Geongbuk</td>
<td>47.10</td>
<td>15.02</td>
<td>51.31</td>
<td>6.57</td>
</tr>
<tr>
<td>Geongnam</td>
<td>40.84</td>
<td>17.18</td>
<td>52.01</td>
<td>7.59</td>
</tr>
<tr>
<td>Jeju</td>
<td>46.91</td>
<td>14.90</td>
<td>58.48</td>
<td>8.91</td>
</tr>
</tbody>
</table>

Table 6. Number of Beds per 10,000 Population by Province

<table>
<thead>
<tr>
<th>Province</th>
<th>1970</th>
<th>1980</th>
<th>Increase Index: 1970 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seoul</td>
<td>13.3</td>
<td>24.7</td>
<td>1.9</td>
</tr>
<tr>
<td>Busan</td>
<td>8.3</td>
<td>22</td>
<td>2.7</td>
</tr>
<tr>
<td>Geonggi</td>
<td>4.3</td>
<td>15.4</td>
<td>3.6</td>
</tr>
<tr>
<td>Gangwon</td>
<td>3.9</td>
<td>15</td>
<td>3.8</td>
</tr>
<tr>
<td>Chungbuk</td>
<td>1.4</td>
<td>11.8</td>
<td>8.4</td>
</tr>
<tr>
<td>Chungnam</td>
<td>2.0</td>
<td>12</td>
<td>6.0</td>
</tr>
<tr>
<td>Jeonbuk</td>
<td>2.0</td>
<td>14</td>
<td>7.0</td>
</tr>
<tr>
<td>Jeonnam</td>
<td>2.8</td>
<td>15.7</td>
<td>5.6</td>
</tr>
<tr>
<td>Geongbuk</td>
<td>4.0</td>
<td>13.8</td>
<td>3.5</td>
</tr>
<tr>
<td>Geongnam</td>
<td>3.8</td>
<td>15.6</td>
<td>4.1</td>
</tr>
<tr>
<td>Jeju</td>
<td>1.8</td>
<td>19.4</td>
<td>10.8</td>
</tr>
</tbody>
</table>

表6에서 人口 10,000名當 病床數에 대한 市道別 資料을 보면 1970년에서 1980년 사이인
10년 동안에 현저한 증가를 나타내어, 빈도의 경우 10배의 증가를 보였다. 서울, 구마 지역은 제외한 10년 동안에 높은 증가율을 나타내고 병床수의 증가가 특히 서울, 구마 지역은 가장 높아 아시아의 경우도 75퍼센트가 의료원이 전중되어 있음을 알 수 있다. 또한 17에서 7%의 25퍼센트 이상이 위치하고 있는 농촌 또는 10% 이상이 위치하고 있어 우리 나라 의료원 분포의 불균형이 여전히 드러내고 있음을 알 수 있다.

Table 7. Distribution of Medical Facilities by Urban and Rural Area

<table>
<thead>
<tr>
<th>都農別</th>
<th>醫療機関分布現況</th>
<th>1980. 10.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>big city</td>
</tr>
<tr>
<td></td>
<td>(%)</td>
<td>(%)</td>
</tr>
<tr>
<td>Total</td>
<td>31,158</td>
<td>16,250</td>
</tr>
<tr>
<td></td>
<td>(100.0%)</td>
<td>(52.3%)</td>
</tr>
<tr>
<td>General Hospital</td>
<td>92</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>(100.0%)</td>
<td>(55.4%)</td>
</tr>
<tr>
<td>Hospital</td>
<td>264</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>(100.0%)</td>
<td>(40.5%)</td>
</tr>
<tr>
<td>Clinic</td>
<td>6,548</td>
<td>3,775</td>
</tr>
<tr>
<td></td>
<td>(100.0%)</td>
<td>(57.7%)</td>
</tr>
<tr>
<td>Dental Hospital & Clinic</td>
<td>2,150</td>
<td>1,553</td>
</tr>
<tr>
<td></td>
<td>(100.0%)</td>
<td>(72.2%)</td>
</tr>
<tr>
<td>Herb Hospital & Clinic</td>
<td>2,354</td>
<td>1,521</td>
</tr>
<tr>
<td></td>
<td>(100.0%)</td>
<td>(64.6%)</td>
</tr>
<tr>
<td>Midwifery</td>
<td>601</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>(100.0%)</td>
<td>(49.6%)</td>
</tr>
<tr>
<td>Pharmacy</td>
<td>13,279</td>
<td>8,416</td>
</tr>
<tr>
<td></td>
<td>(100.0%)</td>
<td>(63.4%)</td>
</tr>
<tr>
<td>Drug-store</td>
<td>3,106</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>(100.0%)</td>
<td>(4.9%)</td>
</tr>
<tr>
<td>Herb-store</td>
<td>2,764</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td>(100.0%)</td>
<td>(13.6%)</td>
</tr>
</tbody>
</table>

Note: 1) included only Seoul, Busan, Daegu, Incheon area.
2) city area excluded 1).
3) included all Gun area.

17) 서울, 구마, 대구, 인천을 포함한 지역임
死亡率과 一部 保健의 關係

单纯相關分析

表8은 208에서 208보에의 健康指標에 7個 獨立變數인 資源投入 人力變數, 保健財源變數과 淨設變數 등의 獨立変數가 어느정도의 関聯性을 갖는가를 알기위한 單純相關分析한

結果이다. 全般的으로 7個保健資源變數 中 比例死亡率과의 관계에서 6個變數가, 粗死亡

率과는 5個變數가 5퍼센트水準에서統計의으로有意한相關関係를 나타내었다. 分類된 各 變

數의 속성별로 분폐 有意한 變數는 粗死亡率에 있어서는 醫師1人當 人口數, 地方自治 단체의

總裁出規模에 대한 保健的費用支出比率등이 正의 相関을 보였으며 人口 10,000名當 病床

數는 正的 較高 相関을 보였다. 另한 比例死亡率에 있어서도 同じ 人口 10,000名當 病床數

가 負의 較高 相関을 보였다.

Table 8. Zero Order Correlation Coefficients of Each Variables with the Proportional Mortality Indicator and Crude Death Rate

<table>
<thead>
<tr>
<th>Variables</th>
<th>Crude Death Rate</th>
<th>Proportional Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populations per physician</td>
<td>.49243**</td>
<td>-.07695**</td>
</tr>
<tr>
<td>Populations per nurse</td>
<td>-.24812**</td>
<td>19051*</td>
</tr>
<tr>
<td>Populations per dentist</td>
<td>.40150</td>
<td>17440**</td>
</tr>
<tr>
<td>Percentage of total health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>expenditure over total budget</td>
<td>.42663**</td>
<td>13299**</td>
</tr>
<tr>
<td>in general accounts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health center per province area</td>
<td>-.02565</td>
<td>24716</td>
</tr>
<tr>
<td>Hospital beds per 10,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>population</td>
<td>-.81154**</td>
<td>-70479**</td>
</tr>
<tr>
<td>Per capita current health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>expenditure</td>
<td>.02910**</td>
<td>-26721**</td>
</tr>
</tbody>
</table>

* Denote: significance at the level of 10%

** Denote: significance at the level of 5%

段階別 多變量回歸分析

1) 粗死亡率

表9는 資源配置 建造者 説明하여 주는 7個 獨立變數와 粗死亡率과의 段階別 多變量回歸分析 結果이다. 全體的으로 본페 粗死亡率에 대하여 7個獨立變數中 1個變數가 제외된 6個變
数가 선택되었으며, 통계적으로 10퍼센트有意水準에서有意性을 보였다. 이들 6개의표현변수들
이 산출률에 대해 87퍼센트는 높은 설명력을 나타내어 산출률과 보건의료資源間에 密接
한 關係가 있음을 알시하고 있다. 특히 산출률의 경우 資源配分의 우선 순위를 보면 人口
10,000名当 病床數, 地方自治단체의 總裁出規模에 대한 保健醫療費支出比率, 1人當 年
間公共保健醫療費, 看護員 1人當 人口數의順으로, 施設變數가 가장 우선으로 나타났고,
그 다음이 財源變數이었으며 人力變數는 크게 작용하지 않는 경향으로 나타났다.回歸係數 β
용 보해 病床数가 增加할수록 또는 國民 1人當 公共保健費가 增加할수록 健康狀態가 增進
(산출률의 低下)되는 것으로 나타났다.

Table 9. Stepwise Multiple Regression of the Selected Variables in Relation
to the Explanation of Crude Death Rate

<table>
<thead>
<tr>
<th>Step</th>
<th>Variables</th>
<th>Multiple R</th>
<th>R²</th>
<th>Beta</th>
<th>Std. Error</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Hospital beds per 10,000 population</td>
<td>.81154</td>
<td>.65859</td>
<td>- .41211**</td>
<td>.12143</td>
<td>-.15301</td>
</tr>
<tr>
<td>2.</td>
<td>Percentage of total health expenditure over total budget in general accounts</td>
<td>.88159</td>
<td>.77720</td>
<td>.90651**</td>
<td>.92297</td>
<td>1.95227</td>
</tr>
<tr>
<td>3.</td>
<td>Per capita current health expenditure</td>
<td>.89885</td>
<td>.80793</td>
<td>- .81025**</td>
<td>-.21048</td>
<td>-.30048</td>
</tr>
<tr>
<td>4.</td>
<td>Populations per nurse</td>
<td>.91953</td>
<td>.84553</td>
<td>- .32766**</td>
<td>.29110</td>
<td>-.39709</td>
</tr>
<tr>
<td>5.</td>
<td>Populations per physician</td>
<td>.9240</td>
<td>.86378</td>
<td>.28977**</td>
<td>.43845</td>
<td>.38364</td>
</tr>
<tr>
<td>6.</td>
<td>Populations per dentist</td>
<td>.93292</td>
<td>.87035</td>
<td>- .12763*</td>
<td>.27842</td>
<td>-.12531</td>
</tr>
</tbody>
</table>

a-constant : 10.38223
** Denotes: significance at the level of 5%
* Denotes: significance at the level of 10%

2) 比例死因率

保健醫療資源에 관한 各種 指標을 獨立変數로 하고 比例死因率를 從屬変數로 하였을 境
遇의 多変量 回歸分析 結果는 表10과 같다. 上記 7個獨立変数들은 比例死因率의 變数7を 92
개변수 수준에서 설명하고있다. 이중 人口 10,000名当 病床数 및 醫師 1人當 人口數 等의
2個説明変数만으로도 87개 변수로, 人口 10,000名当 病床数 하나만으로는 50개 변수로 水準에서
説明되고있다. 多変數 資源의 配分에 관한 指標들이 比例死因率를 説明하는데 있어서 人口
10,000名当 病床数과 醫師 1人이 患者를 取扱하는 法律가 매우 有意한 變数로 登場하고 있
다. 이와 같은 事實은 成人들의 경우 醫療機関에의 近接性이 死因率에 大 SCALE를 미치게
된을 意味한다고 본다. 그 다음으로 有意한 变数로는 保健醫療財政에 관한 变数이었다.

地方自治團體의 總裁出規모에 대한 保健醫療費支出比가 增加할 수록 또는 醫師 1人當 取
Table 10. Stepwise Multiple Regression of the Selected Variables in Relation to the Explanation of Proportional Mortality Indicator

<table>
<thead>
<tr>
<th>Step</th>
<th>Variables</th>
<th>Multiple R</th>
<th>R²</th>
<th>Beta</th>
<th>Std. Error B</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hospital beds per 10,000 population</td>
<td>0.70479</td>
<td>0.49673</td>
<td>-1.03055</td>
<td>0.51418</td>
<td>-1.85191***</td>
</tr>
<tr>
<td>2</td>
<td>Populations per physician</td>
<td>0.93445</td>
<td>0.87319</td>
<td>-0.61044</td>
<td>0.18087</td>
<td>-0.39116**</td>
</tr>
<tr>
<td>3</td>
<td>Percentage of total health expenditure over total budget in general accounts</td>
<td>0.94946</td>
<td>0.90148</td>
<td>0.44825</td>
<td>3.90895</td>
<td>4.67235**</td>
</tr>
<tr>
<td>4</td>
<td>Populations per dentist</td>
<td>0.95227</td>
<td>0.90682</td>
<td>-0.22016</td>
<td>0.11933</td>
<td>-1.0462**</td>
</tr>
<tr>
<td>5</td>
<td>Per capita current health expenditure</td>
<td>0.95916</td>
<td>0.91999</td>
<td>-0.45305</td>
<td>0.93817</td>
<td>-0.8138**</td>
</tr>
<tr>
<td>6</td>
<td>Populations per nurse</td>
<td>0.96150</td>
<td>0.92449</td>
<td>-0.13507</td>
<td>0.17114</td>
<td>-0.79225*</td>
</tr>
<tr>
<td>7</td>
<td>Health center per province area</td>
<td>0.96215</td>
<td>0.92574</td>
<td>-0.06295</td>
<td>0.17346</td>
<td>-0.38992*</td>
</tr>
</tbody>
</table>

a - constant: 81.07990

*** Denotes: significance at the level of 1%

** Denotes: significance at the level of 5%

* Denotes: significance at the level of 10%

IV. 结 論

本研究は，我々の医療資源の利用と保健医療資源の一部を保健医療資源への変化率を考慮する，一部で保健医療資源の配分及び投入量が，保健指標及び死亡率との相関性を分析，検討した。

本分析において利用された資料は，1966年と1970年のセンサス資料を基にした地域別，生来表における死亡率，及び社会統計年報及び観察者において，保健資源の地域別，分布を考慮した。

分析の結果，健康指標における死亡率と保健施設数，保健施設数，病床数及び地域別，保健所数，使用した。同1人，年間，公共保健設備及び地方自治体の統計出規模における，保健医療費支出来率及び計7個の変数を用いた。結果は，次のような。
結論으로 요약할 수 있다.

1. 全般的으로 우리나라 死亡水準 및 保健醫療資源現況이 過去에 비하여 점차 上向되었으며 특히 1970년 以後 死亡率의 低下 및 資源增加의 極劇한 變化는 주목되고 있다.

2. 4個死亡指標 및 一部 保健醫療資源現況을 地域別로 보면 一般的으로 서울, 釜山의 大都市의 경우 他地域보다 死亡水準 및 資源 現況이 良好하였으며 특히 江原地域의 경우 他地域에 비해 死亡率도 높으며 資源分布도 低調하였다.

3. 死亡水準 및 一部保健醫療資源인 保健指標에 대하여 및 몇 다른 나라들과 비교하여 본 결과, 아직도 우리나라는 他先進諸國에 比하여 健康水準이나 保健醫療資源現況에 있어 偏지하고 있었다.

4. 粗死亡率과 比例死亡率은 7個保健資源變數에 人力變數, 保健財源變數, 施設變數들과 各各 낮은 相関을 나타내었으며 이들 健康指標의 高低를 說明하는데 있어서는 上記選択된 保健資源의 投入量變數로서 어느 정도 充分함을 알 수 있었다. 資源變數들이 粗死亡率과 比例死亡率에 있어서 各各 87퍼센트, 92퍼센트의 높은 說明力を 보여 주었다.

5. 粗死亡率 및 比例死亡率에 가장 有意한 説明을 해준 獨立變數는 人口 10,000名 当 病床數로 施設變數였다. 이는 保健醫療資源이 우리나라 健康水準 上向에 至大한 影響을 비칠을 意味한다.

우리나라의 死亡水準을 低下시키기 위해서는 所要資源의 確保 및 致便배분이외에도 모든 住民이 必要로 하는 診療를 반응할 수 있도록 合理의 인 醫療傳遞體系를 確立하고 其他 積應 및 環境衛生의 改善, 上下水道供給의 擴大 및 住民保健意識의 上向 등이 아울러 이루어져야 할 것으로 생각된다.

参考文獻

經濟企劃院, 韓國의 社會指標, 1980.
朴在榮, 出生, 死亡水準의 推定과 經濟 社會의 變數와의 関係에 関한 研究, 經濟企劃院
調査統計局, 家族計劃研究院, 1980. 2.

(Abstract)

A Study on Relationships between Level of Mortality and Health Care Resources in Korea

Yoo Hyang Cho*

This study examines the relationship between crude death rate, proportional mortality indicator used as a proxy for the overall level of health situation and the population per each physician, nurse, dentist, the number of hospital beds per 10,000 persons, the number of health center, per capita current public health expenditure, and percentage of total health expenditure over budget in general accounts. These seven independent variables are based on data of eleven (11) provinces in Korea.

The data used for this study were from Yearbook of Public Health and Social Statistics 1965-1981 published by Ministry of Health and Social Affairs and “Recent Mortality Trends in Korea” published by Jeong Kun Kim, 1976 and other references.

The stepwise multiple regression was employed for explaining variance of the levels of health, by using Statistical Package for the Social Science (SPSS) computer program.

The results are as follows:

The stepwise regression analysis shows that the proportional mortality indicator and crude death rate were significantly associated with the independent variables; and the most predicted variables was the number of hospital bed per 10,000 persons variable and the proximity factor. It is well explained for the relationship between health service resource and mortality. With these data processing it revealed that the crude death rate explained at the level of 87 percent and the proportional mortality indicator at 92 percent level. Since health status is a reflection of the socio-economic environment and demographic factor etc., health problems cannot be dealt with in isolation. Improving nutrition, essential combating disease and providing systematic large-scale health programs are considered most essential both as a means and an objective of development.

We are thus reminded that need to pay as more attention to find out a better method of allocating even scarce resources to improve health situation of the country.

* Researcher, Korea Institute for Population and Health.