2009년도 제4차 「저출산고령사회 포럼」

□ 일시: 2009. 12. 29(화) 15:00~18:00

□ 장소: 한국보건사회연구원 신관 제2회의실

2009년도 제4차「저출산고령사회 포럼」(안)

■ 일 시: 2009. 12. 29(화) 15:00~18:00

■ 장 소: 한국보건사회연구원 신관 제2회의실

■ 프로그램:

좌장: 정경희(한국보건사회연구원 저출산고령사회연구실장)

15:00~16:30 주제발표

발표: "다수준기법(Multilevel Analysis Technique)의 기본 원리와

출산력분석에서의 응용"

조영태(서울대학교 보건대학원 교수)

16:30~16:40 coffee break

16:40~17:10 지정토론

신윤정(한국보건사회연구원 저출산고령사회연구실 부연구위원) 박종서(한국보건사회연구원 저출산고령사회연구실 선임연구원)

17:10~18:00 종합토론 및 폐회

다수준분석기법(Multilevel Analysis Technique)의 기본 원리와 출산력분석에서의 응용

다수준분석기법(Multilevel Analysis Technique)의 기본 원리와 출산력분석에서의 응용

조 영 태 (서울대학교 보건대학원)

이론적 배경

- Society or community is not just an aggregate of individuals
- Individuals always interact with the social contexts to which they belong
 - Individuals are influenced by the social groups they belong
 - The properties of those groups are also influenced by individuals
- Sociology, in nature, deals with hierarchically structured study subjects
 - Eg.) Social forces, Cultural relativism, Structural Functionalism, etc.

이론적 배경-보건사회학의 예

- 개인 건강/질병의 위험요소로서 환경의 중요성
- Social Conditions as Fundamental Causes of Disease (Link and Phelan 1995)

Social Conditions (Individual-level, Contextual Level)

Individual Health Behaviors & Attitudes

Health/Mortality Status

이론적 배경-보건사회학의 예

- 다양한 개인 건강/질병 outcome에 대한 환경(지역) 특성의 독립적인 효과가 보고됨 (Yen & Syme 1999).
- 지역 특성 (Robert 1999)
 - 사회경제적 환경
 - 서비스 환경

- 물리적 환경

집단적 가치관, 태도, 사회적 자본,

개인의 건강/질병

한국 출산력분석에서의 가능성

- So far, mostly focused on individual level characteristics
- But it is certain that each ku/kun has different level of fertility, fertility intention, or fertility related values
- It may be attributable not only to the individual's compositions but also to the area's own contexts.

방법론적 배경

- · Hierarchically Structured Data
 - Multi-stage sampling
 - · Individuals, nested in Primary Sampling Units, nested in Strata.
 - 전국출산력조사: 시/도-구/군-동/읍.면
 - 같은 조사구를 가진 개인들은 어떤 변수들에 대해 서로 공유하는 공통적인 면모를 지닐 수 있는 반면 그것이 다른 조사구의 개인들과는 다를 수 있다.
 - · Non-independence or autocorrelation
 - 기존의 회귀분석은 모든 개인이 무작위적인 지역 분포를 가 진 것으로 가정한다.

왜 다수준 분석법인가?

(주어진 상황: individuals nested within areas with both individual-and area-level characteristics)

- 선택1: To ignore the macro-level units and attributes
 - Autocorrelation
 - Individualization
- 선택2: To aggregate individuals to the macro-units
 - No individuals
 - Ecological fallacy

왜 다수준 분석법인가?

- 선택3: Separate regressions for each area
 - Ignores the macro-level characteristics
 - Not practical (when the number of group is large)
- 선택4: Contextual analysis (지역변수와 개인변수 를 같은 수준에 있다고 가정함)
 - Ignores the groupings
 - Autocorrelation
 - Assumes invariant effects of individual and group level characteristics

왜 다수준 분석법인가?

- 선택5: Analysis of Covariance Analysis (ANCOVA, 지역간 차이를 보기 위한 지역 dummy)
 - Ignores the group effects
 - Assumes equal individual-level effects across groups
 - Not practical (99 dummies when 100 areas)
- 선택6: Contextual + ANCOVA
 - Assumes equal individual and group level effects across groups
 - Not practical

왜 다수준 분석법인가?

- 선택7: Intercept (or slope) as outcome model (varying coefficient model)
 - 각 지역에 개인수준의 변수들로 각각의 regression 분석 (예, 100 개의 regression equations).
 - 100개의 coefficient들을 종속변수로 놓고 지역변수들이 독립변수 가 되어 2차 regression분석을 실시함.
 - 지역수준 변수의 효과를 보는데 유용함.
 - 개인변수의 지역별 효과를 볼 수 있지만 공통적인 효과를 볼 수 없음.
 - 어떤 지역에서는 개인변수의 효과가 통계적으로 무의미 할 수도 있지만 (large standard error), 2차 회귀분석 시 무시됨.
 - Non-practical.

다수준 분석법의 유용성

- 개인(micro)수준 변수와 지역(macro)수준 변수를 동시에 모델에 포함시킨다.
- 한 지역에 포함된 개인들이 서로 연관적일 가능성을 고려할 수 있다.
- 출산력의 지역간 차이를 간단한 parameter로 확인할 수 있다.
- 그 차이의 원인이 compositional한 특성에서 기인한 것인 지 contextual한 특성에서 기인하는 것인지 확인 가능하다.
- 다수준 구조를 가진 대부분의 데이터에 적용 가능하다. (예, 학생-학교, 환자-병원, 종단자료 (Hazard model, SEM), APC model)

다수준 분석법의 특징

- 다양한 명칭
 - Multilevel Analysis, Hierarchical Linear Model (HLM),
 Mixed Model, Random Effect (Coefficient) Model,
 Variance Component Model.
- 교재마다 다른 notations
 - level 2 random variance: $\sigma^2 \sim \tau^2$
 - Level 1 error term: $R_{ii} \sim e_{ii}$
- · Soft Wares: HLM, SAS, SPSS, MLWin, MIXREG
 - HLM http://www.ssicentral.com/
 - · Full version, Rental license, student version

Basic Model (Two Level Case)

$$Y_{ij} = b_{0j} + b_{1j}X_{ij} + \varepsilon_{ij} \qquad \varepsilon_{ij} \sim N(0, \sigma^2)$$

Note the j subscript, which denotes group identification

 Y_{ij} = dependent variable for *i*th individual in *j*th group

 X_{ij}^{\prime} = individual-level independent variable for *i*th individual in *j*th group.

 ε_{ij}^{*} = individual-level error term for *i*th individual in *j*th group, normally distributed with mean of 0 and variance of σ^{2} .

- Unlike conventional modeling techniques, where coefficients (intercept and slopes) are assumed to be fixed, this model allows them to vary across groups.

$$\begin{split} b_{0j} &= \gamma_{00} + \gamma_{01} C_j + U_{0j} & U_{0j} \sim N(0, \tau_{00}) \\ b_{1j} &= \gamma_{10} + \gamma_{11} C_j + U_{1j} & U_{1j} \sim N(0, \tau_{11}) \\ & \text{cov} \left(U_{0j}, \ U_{1j} \right) = \tau_{10} \end{split}$$

$$Y_{ij} = \gamma_{00} + \gamma_{01}C_j + U_{0j} + (\gamma_{10} + \gamma_{11}C_j + U_{1j})X_{ij} + \varepsilon_{ij}$$

$$= \gamma_{00} + \gamma_{10}X_{ij} + \gamma_{01}C_j + \gamma_{11}X_{ij}C_j + \varepsilon_{ij} + U_{0j} + U_{1j}X_{ij}$$

 C_i = group-level independent variable

 γ_{00} = overall intercept

 γ_{0I} = effect of group-level independent variable on intercept

 γ_{10} = overall slope

 γ_{II} = effect of group-level independent variable on slope

 U_{0i} = deviation from overall intercept for each group

 U_{Ii} = deviation from overall slope for each group

 τ_{00} = group-level variance of intercept

 τ_{II} = group-level variance of slope

 τ_{I0} = covariance of intercept and slope

(if positive, when intercept increases, slope also increases)

- Thus, multilevel model is different from conventional regression models in that it includes both fixed and random coefficients.
- Also, individual- and group-level effects are simultaneously estimated.
- Error term is now decomposed to within- and between-group variances.
- Due to random parts, iterative algorithm should be used to generate population estimates.
- If τ_{00} or τ_{11} are statistically equal to zero, this model becomes the same as conventional model.
- this means that intercept and slope are not random or do not vary across groups. "They are fixed"
- Therefore, decision for the use of multilevel analysis starts from analyzing the random variance for intercept from null model.

- 1. Calculate the intra-class correlation coefficient (ρ), using intercept only model.
- Intra-class correlation coefficient
 - A measure of the degree of dependence of individuals.
 - It tells us the extent of error variance associated with groups.
 - "the more individuals share common experiences due to closeness in space and/or time, the more they are similar, and the higher the intra-class correlation."
- The proportion of the variance in the outcome variable that is between the second- level units.

- If there is significant intra-class correlation, it means individuals nested in a group exhibit significant autocorrelation, which makes the conventional methods not useful.
- then how to calculate ρ :

$$\rho = \frac{population_variance_between_marco_units}{total_variance} = \frac{\tau}{\tau + \sigma}$$

• Here if τ is not statistically different from zero, ρ will be zero as well, which means no error variance is attributable to groups.

 In this case, we do not need to use multilevel analysis.

Model 1: $\rho = 0.58$, with significant random intercept variance.

$$0.87/(0.64+0.87) = 0.58$$

⇒ 58 percent of total variance is attributable to group-level variations.

- 2. Progressively include individual-level independent variables, paying attention to random intercept variance (τ_{00}).
 - if the value of τ_{00} does not substantially change in its magnitude and significance, there exit group differences independent of individual characteristics.
 - this indicates the need of further investigation of contextual characteristics.
 - if the value of τ_{00} decreases or becomes not significant with inclusion of individual level characteristics, this means the area variation is attributable to the composition of individuals.

- 3. Include group-level independent variables as well as individual-level variables.
 - if the value of τ_{00} decreases, group differences in dependent variable is attributable to the group-level variables.
 - if inclusion of group-level variables does not change the effect of independent variables, group-level variables and individual-level variables have independent effects.

- 4. If it is suspected that the effect of any individual level characteristics on dependent variable varies across groups, let the individual level variable to be random.
 - here, we look at the value and significance of τ_{11} .
 - when slope is allowed to be random, it is advised to utilize group or grand centering of the individual variable.

group mean centering: $(x_{ii}-x_{i})$

grand mean centering: $(x_{ij}-x..)$

Centering

- 일반적으로 intercept는 모든 독립변수가 0일 때, 종속변수의 기대값 혹은 평균을 의미한다.
- 이는 다수준분석에서 intercept만 random하게 설정되어 있을 때도 마찬가지이다.
- 이 경우 intercept의 random variance는 독립변수가 어떤 값의 취해도 변하지 않는다.

Centering

- 하지만 만일 slope도 random하게 설정되면 독립변수가 어떤 값을 취하는가에 따라 intercept의 random variance의 값은 크게 변할 수 있다.
- 이 때 만일 독립변수가 0일 때 종속변수의 기대값이 실질적인 의미가 없는 경우, intercept의 random variance 역시무의미한 정보를 전달하게 된다. (예, 소득과 건강... 소득이 0일 때 건강수준?)
- 그러므로 intercept를 실제 데이터에서 독립변수의 가장 대표적인 곳에 위치시키면, 그 때 intercept값과 그 random variance가 실질적인 정보를 전달하게 된다.

- 4. Random slope 의 연장
 - you can have any independent to be random across groups (even dichotomous ones)
 - when random intercept and slope are both considered simultaneously, you need to analyze the covariance τ_{01} .
- 실제 분석을 수행하는데 있어 Random slope모델은 잘 사용되지 않는다. 그 이유는 이론적이기 보다는 기술적 인 면이 강한데, slope을 random하게 설정하면 컴퓨터 패 키지가 모수를 추정하는 시간이 길어지며 때로는 MLE의 iteration과정에서 convergence가 이루어지지 않기도 한다. 만일 convergence가 이루어져도 해석하는데 간단하지 않 으므로, 많은 경우 random intercept model로 분석을 마치 게 된다.

- 5. You can include cross-level interaction terms in the model (individual*group).
 - cross-level interaction terms can make the random slope variance disappear.
- 6. For model fit, REML algorithm generates 2ResLL, which is analogous to -2LL (SAS).

- 7. To be or Not to be Random
 - each predictor may be assigned to be random,
 - each random slope may covary with any other random slopes.
 - but parsimonious model is more desirable...
 - then what is a good guide for a fixed or a random slope?
 - in general, coefficients with strong fixed effect..
 the chance of varying slope is high..
 - but it is also possible.... a coefficient is not significant, and it is due to varying effect of the variable across macro-units.
- +++> Theory!!!

다수준 분석의 실례

1. 종속변수가 continuous 변수일 때.

Popularity Data (Hox 2002 Multilevel Analysis: Techniques and Applications)

Schools (N=200)

Teacher Experience (Z, in years)

Pupils (N=2000)

Y: Popularity (in a self-rating scale,

0 very unpopular -10 very popular)

X: Gender (0=boy, 1=girl)

	Model 1		Model 2		Model 3		Model 4		Model 5		Model 6	
	Coeffi.	S.E	Coeffi.	8.8	Coeffi.	S.E	Coeffi.	S.E	Coeffi.	S.E	Coeffi.	S.E
Fixed Effect												
Intercept	5.31	0.10	4.90	0.10	3.56	0.17	3.34	0.16	3.34	0.16	3.31	0.16
.evel-1												
Gender[Boy]												
Girl			0.84	0.03	0.84	0.03	0.84	0.06				
Centered	Gender								0.84	0.06	1.33	0.13
S-leve.												
TeaExp					0.09	0.01	0.11	0.01	0.11	0.01	0.11	0.01
ross-level interac	tion											
Cgender*Tea8	ΧO										-0.03	0.01
landom Effect												
R (level-1)	0.64	0.02	0.46	0.01	0.46	0.01	0.39	0.01	0.39	0.01	0.39	0.01
U0 (Intercept)	0.88	0.13	0.86	0.13	0.49	0.07	0.41	0.06	0.41	0.06	0.41	0.06
U1 (Gender)							0.02	0.04	0.02	0.04	0.02	0.04
U11(Covariand	;e)						0.27	0.05	0.27	0.51	0.23	0.04
-2ReLL	5115	.60	4492	,90	4444	.40	4275	.90	4275	.90	4268	,40
Chi^2 Test (DF)			622.	7(1)	48.5	(1)	168.	5(2)	N/	A	7.5	(1)

SAS와 HLM의 차이점

• SAS는 level-one 데이터와 level-2 데이터가 하나의 data set으로 구성되어야 한다.

SAS Data Structure

Obs	PUPIL	SCHO	OL	POPUL	٩R	SEX	TEXP
1	1	1	8	1	2.	4.	
2	2	1	7	Ó	2	*	
3	3	1	7	1	2	4	
4	4	1	9	1	2	4	
5	5	1	8	1	2	4	

- HLM은 하나의 데이터 혹은 각 level이 따로 구성 된 데이터 모두를 사용할 수 있다.
 - 이 경우 다른 두 수준의 데이터를 연결해주는 변수를 "ID" 변수로 지정해야 한다.

SAS와 HLM의 차이점

- SAS는 종속변수가 continuous 변수일 때, proc mixed 프로시져를 사용하는데, model statement 에 두 level이 합쳐진 equation을 포함시켜야 한다
- HLM은 각 level을 교과서적인 equation을 통해 연결시킨다 - SAS에 비해 간단함.
- Centering 도 SAS는 Centered된 변수를 data 단계에서 포함시켜야 하는 반면 HLM은 프로그램에 centering option이 있다.
- Model Fit: SAS는 -2 Res Log Likelihood를 HLM은 Deviance값을 산출한다. 둘의 차이는 MLE방법의 차이에서 비롯되는데 큰 차이가 없다.

출산력분석에서 다수준분석의 이론적 배경과 관련하여 도움이 될만한 논문들

- DiPrete, T.A., and J. Forristal. 1994. "Multilevel Models: Methods and Substance." Annual Review of Sociology 20: 331–357.
- Courgeau, D., and B. Baccaini. 1998. "Multilevel Analysis in the Social Science." Population: An English Section 10: 39-71.
- Robert, S. A. 1999. "Socioeconomic Position and Health: The Independent Contribution of Community Socioeconomic Context." Annual Review of Sociology 25: 489–516.
- Hirschman and Guest. 1990. "Multilevel models of fertility determination in four Southeast Asian Countries." Demography 27: 369–396.
- McNay et al. 2003. "Why are uneducated women in India using contraception? A multilevel analysis." Population Studies 57: 21-40.
- Example 1, example 2

유용한 다수준분석 교재

Hox, Joop. 2002. Multilevel Analysis: Techniques and Applications

Snijders, Tom and Roel Bosker. 1999. Multilevel Analysis: An introduction to basic and advanced multilevel modeling

Kreft, Ita and Jan de Leeuw. 1998. Introducing Multilevel Modling

Raudenbush, Stephen W. and Anthony S. Bryk. 2002. Hierarchical Linear Models: Applications and Data Analysis Methods.

